SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Howcroft J, Kofman J, Lemaire ED. J. Neuroengineering Rehabil. 2013; 10(1): 91.

Copyright

(Copyright © 2013, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/1743-0003-10-91

PMID

23927446

Abstract

BACKGROUND: Falls are a prevalent issue in the geriatric population and can result in damaging physical and psychological consequences. Fall risk assessment can provide information to enable appropriate interventions for those at risk of falling. Wearable inertial-sensor-based systems can provide quantitative measures indicative of fall risk in the geriatric population. METHODS: Forty studies that used inertial sensors to evaluate geriatric fall risk were reviewed and pertinent methodological features were extracted; including, sensor placement, derived parameters used to assess fall risk, fall risk classification method, and fall risk classification model outcomes. RESULTS: Inertial sensors were placed only on the lower back in the majority of papers (65%). One hundred and thirty distinct variables were assessed, which were categorized as position and angle (7.7%), angular velocity (11.5%), linear acceleration (20%), spatial (3.8%), temporal (23.1%), energy (3.8%), frequency (15.4%), and other (14.6%). Fallers were classified using retrospective fall history (30%), prospective fall occurrence (15%), and clinical assessment (32.5%), with 22.5% using a combination of retrospective fall occurrence and clinical assessments. Half of the studies derived models for fall risk prediction, which reached high levels of accuracy (62-100%), specificity (35-100%), and sensitivity (55-99%). CONCLUSIONS: Inertial sensors are promising sensors for fall risk assessment. Future studies should identify fallers using prospective techniques and focus on determining the most promising sensor sites, in conjunction with determination of optimally predictive variables. Further research should also attempt to link predictive variables to specific fall risk factors and investigate disease populations that are at high risk of falls.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print