SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Blanco C, Krueger RF, Hasin DS, Liu SM, Wang S, Kerridge BT, Saha T, Olfson M. JAMA Psychiatry 2013; 70(2): 199-208.

Affiliation

College of Physicians and Surgeons, Department of Psychiatry, Columbia University, NewYork, NY 10032, USA. cb255@columbia.edu

Copyright

(Copyright © 2013, American Medical Association)

DOI

10.1001/jamapsychiatry.2013.281

PMID

23266570

Abstract

CONTEXT Clinical experience and factor analytic studies suggest that some psychiatric disorders may be more closely related to one another, as indicated by the frequency of their co-occurrence, which may have etiologic and treatment implications. OBJECTIVE To construct a virtual space of common psychiatric disorders, spanned by factors reflecting major psychopathologic dimensions, and locate psychiatric disorders in that space, as well as to examine whether the location of disorders at baseline predicts the prevalence and incidence of disorders at 3-year follow-up. DESIGN, SETTING, AND PATIENTS A total of 34 653 individuals participated in waves 1 and 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. MAIN OUTCOME MEASURES The distance between disorders at wave 1, calculated using the loadings of the factors spanning the space of disorders as coordinates. This distance was correlated with the adjusted odds ratios for age, sex, and race/ethnicity of the prevalence and incidence of Axis I disorders in wave 2, with the aim of determining whether smaller distances between disorders at wave 1 predicts higher disorder prevalence and incidence at wave 2. RESULTS A model with 3 correlated factors provided an excellent fit (Comparative Fit Index = 0.99, Tucker-Lewis Index = 0.98, root mean square error of approximation = 0.008) for the structure of common psychiatric disorders and was used to span the space of disorders. Distances ranged from 0.070 (between drug abuse and alcohol dependence) to 1.032 (between drug abuse and dysthymia). The correlation of distance between disorders in wave 1 with adjusted odds ratios of prevalence in wave 2 was -0.56. The correlation of distance in wave 1 with adjusted odds ratios of incidence in wave 2 was -0.57. CONCLUSIONS Mapping psychiatric disorders can be used to quantify the distances among disorders. Proximity in turn can be used to predict prospectively the incidence and prevalence of Axis I disorders.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print