SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Xu T, Hao Y, Peng Z, Sun L. Transp. Res. Rec. 2012; 2321: 55-65.

Copyright

(Copyright © 2012, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.3141/2321-08

PMID

unavailable

Abstract

Variable message signs (VMSs) can be used to divert traffic to less congested areas of road networks and to enhance network performance. Central to these goals are increasing the acceptability of the suggested guidance and improving the credibility of VMS information among drivers. This study develops a new model for quantifying the effect of VMS messages on drivers' en route diversion behavior for real-time VMS-based route guidance that is consistent with driver behavior. The model incorporates attributes that can be obtained online, including traffic information, traffic flow, weather, and incident duration. The parameters, observation noise, and system noise characterizing this model are calibrated dynamically according to real-time detected traffic data and adaptive Kalman filtering theory. In the calibration, the consistency between time-dependent actual and predicted traffic states is verified. The results indicate that the calibration model enhances the accuracy of traffic state prediction and thereby increases the effectiveness of the proposed route guidance. The model is also suitable for application to real-world situations because it can more accurately estimate and predict the likely route choices of drivers using aggregate-level traffic data. Such data can be used to track the evolutionary process of en route diversion behavior, as well as design meaningful route guidance control goals and strategies for traffic decision makers. Science Foundation.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print