SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mesbah M, Thompson R, Moridpour S. Transp. Res. Rec. 2012; 2284: 21-28.

Copyright

(Copyright © 2012, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.3141/2284-03

PMID

unavailable

Abstract

A bike lane is an effective way to improve cycling safety and to decrease greenhouse gas emissions with the promotion of cycling. Improvements include high-quality off-road facilities and on-road bike lanes. Whereas construction of off-road lanes is not always possible because of urban land constraints and construction costs, on-road lanes can be a cost-effective alternative. An optimization framework for the design of a network of bike lanes in an urban road network was proposed. This framework identified links on which a bike lane could be introduced. Allocation of a lane to cyclists would increase the use of cycling, although it could disadvantage auto traffic. The presented approach balances the effects of a bike lane for all stakeholders. A bilevel optimization was proposed to encompass the benefits of cyclists and car users at the upper level and a model for traffic and bike demand assignment at the lower level. The objective function was defined by a weighted sum of a measure for private car users (total travel time) versus a measure for bike users (total travel distance on bike lanes). A genetic algorithm was developed to solve the bilevel formulation, which included introduction of a special crossover technique and a mutation technique. The proposed optimization will help transport authorities at the planning stage to quantify the outcomes of various strategies for active transport.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print