SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gonzalez H, Han J, Ouyang Y, Seith S. Transp. Res. Rec. 2011; 2215: 75-84.

Copyright

(Copyright © 2011, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.3141/2215-08

PMID

unavailable

Abstract

The identification and characterization of traffic anomalies on massive road networks is a vital component of traffic monitoring and control. Anomaly identification can be used to reduce congestion, increase safety, and provide transportation engineers with better information for traffic forecasting and road network design. However, because of the size, complexity, and dynamics of transportation networks, automating such a process is challenging. A multidimensional mining framework is proposed; it can be used to identify a concise set of anomalies from massive traffic monitoring data and then overlay, contrast, and explore such anomalies in multidimensional space. The framework is based on the development of two novel methods: (1) efficient anomaly mining stemming from the discovery of the atypical fragment (a compact representation of a set of abnormal traffic patterns happening across a sequence of connected road segments, possibly spanning multiple roads, and occurring at overlapping time intervals) and (2) a multidimensional anomaly overlay model that enables the clustering of multiple atypical fragments according to different criteria (e.g., severity, topology, or spatiotemporal characteristics). The atypical fragment provides a concise, global view of the traffic anomaly situation, whereas the framework for anomaly overlay provides the power of online analytical processing to facilitate the discovery of patterns associated with different anomaly types and the navigation of anomalies at multilevel abstraction.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print