SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

de Oña J, López G, Mujalli R, Calvo FJ. Accid. Anal. Prev. 2013; 51: 1-10.

Affiliation

TRYSE Research Group, Department of Civil Engineering, University of Granada, ETSI Caminos, Canales y Puertos, c/Severo Ochoa s/n, 18071 Granada, Spain. Electronic address: jdona@ugr.es.

Copyright

(Copyright © 2013, Elsevier Publishing)

DOI

10.1016/j.aap.2012.10.016

PMID

23182777

Abstract

One of the principal objectives of traffic accident analyses is to identify key factors that affect the severity of an accident. However, with the presence of heterogeneity in the raw data used, the analysis of traffic accidents becomes difficult. In this paper, Latent Class Cluster (LCC) is used as a preliminary tool for segmentation of 3229 accidents on rural highways in Granada (Spain) between 2005 and 2008. Next, Bayesian Networks (BNs) are used to identify the main factors involved in accident severity for both, the entire database (EDB) and the clusters previously obtained by LCC. The results of these cluster-based analyses are compared with the results of a full-data analysis. The results show that the combined use of both techniques is very interesting as it reveals further information that would not have been obtained without prior segmentation of the data. BN inference is used to obtain the variables that best identify accidents with killed or seriously injured. Accident type and sight distance have been identify in all the cases analysed; other variables such as time, occupant involved or age are identified in EDB and only in one cluster; whereas variables vehicles involved, number of injuries, atmospheric factors, pavement markings and pavement width are identified only in one cluster.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print