SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lee S, Lee UK, Han CS. Proc. Inst. Mech. Eng. Pt. D J. Automobile Eng. 2001; 215(2): 197-216.

Copyright

(Copyright © 2001, Institution of Mechanical Engineers, Publisher SAGE Publishing)

DOI

10.1243/0954407011525584

PMID

unavailable

Abstract

In this paper, the enhancement of vehicle handling characteristics through the active kinematic control system (AKCS) is investigated. AKCS can improve the stability and ride comfort of a vehicle by automatically controlling suspension geometry in accordance with the running conditions of a vehicle. The variable roll centre suspension concept in a McPherson strut suspension is proposed, and lateral acceleration feedback control is derived to calculate the control input. The independent rear wheel steering system, which controls both rear wheels independently and actively, is also proposed. To achieve this, three suggested positions for controlling the suspension geometry are considered. The first position is between the mounting point of the lower arm of a McPherson front suspension and the vehicle body. The second position is between the mounting point of the strut and the vehicle body. The third position is between the mounting point of the lateral link of the multilink rear suspension and the vehicle body. In order to evaluate the handling performance, a 15 degrees of freedom full vehicle model is constructed using the commercial multibody analysis program ADAMS. The control inputs for integrated control of the front and rear suspensions are defined, and roll centre migration and vehicle behaviour are investigated. In step steering and double lane change manoeuvres, the simulation results demonstrate that integrated kinematic control can adjust the roll centre migration, by which the handling characteristics of the AKCS vehicle such as roll angle, lateral acceleration and yaw rate are much improved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print