SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cheng X, Byström A, Wickström U, Veljkovic M. J. Fire Sci. 2012; 30(2): 170-184.

Copyright

(Copyright © 2012, SAGE Publishing)

DOI

10.1177/0734904111432834

PMID

unavailable

Abstract

A pool fire test was conducted in an uninsulated steel container under low ambient temperature condition, at −20°C. The heat balance of the enclosure fire was analyzed. The size of the container was 12 m× 2.4 m and 2.4 m high, and it was made of 3-mm-thick steel. During the fire test, the fuel mass loss rate was recorded and the temperatures at different positions were measured with high-temperature thermocouples and plate thermometers. The fire scenario was simulated by using fire dynamics simulator software, and the simulated and measured results were compared. The coarse high-temperature thermocouple responded slower, and therefore, temperature measured by the high-temperature thermocouple was corrected to eliminate the effect of the thermal inertia. Furthermore, a simple two-zone model was proposed for estimating gas temperature in the enclosure of the highly conductive steel walls assuming a constant combustion rate. The convective and radiative heat transfer resistances at the inside and outside surfaces of the enclosure were analyzed.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print