SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Nicholson GM, Graudins A, Wilson HI, Little M, Broady KW. Toxicon 2006; 48(7): 872-898.

Affiliation

Neurotoxin Research Group, Department of Medical & Molecular Biosciences, University of Technology, Sydney, P.O. Box 123, City Campus, Broadway, NSW 2007, Australia. Graham.Nicholson@uts.edu.au

Copyright

(Copyright © 2006, Elsevier Publishing)

DOI

10.1016/j.toxicon.2006.07.025

PMID

16934848

Abstract

The unique geographic isolation of Australia has resulted in the evolution of a distinctive range of Australian arachnid fauna. Through the pioneering work of a number of Australian arachnologists, toxinologists, and clinicians, the taxonomy and distribution of new species, the effective clinical treatment of envenomation, and the isolation and characterisation of the many distinctive neurotoxins, has been achieved. In particular, work has focussed on several Australian arachnids, including red-back and funnel-web spiders, paralysis ticks, and buthid scorpions that contain neurotoxins capable of causing death or serious systemic envenomation. In the case of spiders, species-specific antivenoms have been developed to treat envenomed patients that show considerable cross-reactivity. Both in vitro and clinical case studies have shown they are particularly efficacious in the treatment of envenomation by spiders even from unrelated families. Despite their notorious reputation, the high selectivity and potency of a unique range of toxins from the venom of Australian arachnids will make them invaluable molecular tools for studies of neurotransmitter release and vesicle exocytosis as well as ion channel structure and function. The venoms of funnel-web spiders, and more recently Australian scorpions, have also provided a previously untapped rich source of insect-selective neurotoxins for the future development of biopesticides and the characterisation of previously unvalidated insecticide targets. This review provides a historical viewpoint of the work of many toxinologists to isolate and characterise just some of the toxins produced by such a unique group of arachnids and examines the potential applications of these novel peptides.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print