SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yii EH, Buchanan AH, Fleischmann CM. Fire Safety J. 2006; 41(1): 62-75.

Copyright

(Copyright © 2006, Elsevier Publishing)

DOI

unavailable

PMID

unavailable

Abstract

This paper discusses the effect of fuel type and geometry on predicted compartment temperatures derived from computer modelling of post-flashover compartment fires. Many previous studies have investigated post-flashover fires with either wood crib or liquid pool fuels, but very few analytical or experimental studies have considered realistic wood-based fuels with different ratios of surface area to volume, combined with plastic-based fuels. A simple single zone fire model was used to calculate the temperatures in post-flashover compartment fires. The program includes a catalogue of furniture items, each with fuel mass loss rate evaluated on the basis of a constant regression rate on all exposed surfaces. The program also includes a pool-burning model and considers wood fuels and thermoplastic fuels burning together inside a compartment. Use of the model shows that the total fuels load alone is not sufficient to characterise a post-flashover fire. The fire temperature is highly dependent on the fuel type and geometry. For given ventilation and total fuel load, the resulting temperature depends greatly on the average thickness of the wood fuels and the presence of thermoplastic fuels. The ratio of the available fuel surface area to the ventilation opening is particularly important. Several fire scenarios involving different fuel types and characteristics are simulated and compared with Eurocode parametric fires.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print