SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen S, Rakotonirainy A, Sheehan M, Krishnaswamy S, Loke SW. Proc. Australas. Road Safety Res. Policing Educ. Conf. 2006; 10.

Copyright

(Copyright © 2006, copyright holder varies, Publisher Monash University)

DOI

unavailable

PMID

unavailable

Abstract

This paper presents a conceptual framework for an in-vehicle system, which assesses crash risk when a driver is manoeuvring on a curve. Our approach consists of using Intelligent Transport Systems (ITS) to collect information about the driving context. The driving context corresponds to information about the environment, driver, and vehicle gathered from sensor technology. Sensors are useful to detect drivers' high-risk situations such as curves, fogs, drivers' fatigue or slippery roads. However, sensors can be unreliable, and therefore the information gathered from them can be incomplete or inaccurate. In order to improve the accuracy, a system is built to perform information fusion from past and current driving information. The integrated information is analysed using ubiquitous data mining techniques and the results are later used in a Coupled Hidden Markov Model (CHMM), to learn and classify the information into different risk categories. CHMM is used to predict the probability of crash on curves. Based on the risk assessment, our system provides appropriate intervention to the driver. This approach could allow the driver to have sufficient time to react promptly. Hence, this could potentially promote safe driving and decrease curve related injuries and fatalities.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print