SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Prakash RS, De Leon AA, Mourany L, Lee H, Voss MW, Boot WR, Basak C, Fabiani M, Gratton G, Kramer AF. Front. Hum. Neurosci. 2012; 6(online): 115.

Affiliation

Department of Psychology, The Ohio State University, Columbus, OH, USA.

Copyright

(Copyright © 2012, Frontiers Research Foundation)

DOI

10.3389/fnhum.2012.00115

PMID

22615690

Abstract

Acquisition of complex skills is a universal feature of human behavior that has been conceptualized as a process that starts with intense resource dependency, requires effortful cognitive control, and ends in relative automaticity on the multi-faceted task. The present study examined the effects of different theoretically based training strategies on cortical recruitment during acquisition of complex video game skills. Seventy-five participants were recruited and assigned to one of three training groups: (1) Fixed Emphasis Training (FET), in which participants practiced the game, (2) Hybrid Variable-Priority Training (HVT), in which participants practiced using a combination of part-task training and variable priority training, or (3) a Control group that received limited game play. After 30 h of training, game data indicated a significant advantage for the two training groups relative to the control group. The HVT group demonstrated enhanced benefits of training, as indexed by an improvement in overall game score and a reduction in cortical recruitment post-training. Specifically, while both groups demonstrated a significant reduction of activation in attentional control areas, namely the right middle frontal gyrus, right superior frontal gyrus, and the ventral medial prefrontal cortex, participants in the control group continued to engage these areas post-training, suggesting a sustained reliance on attentional regions during challenging task demands. The HVT group showed a further reduction in neural resources post-training compared to the FET group in these cognitive control regions, along with reduced activation in the motor and sensory cortices and the posteromedial cortex. Findings suggest that training, specifically one that emphasizes cognitive flexibility can reduce the attentional demands of a complex cognitive task, along with reduced reliance on the motor network.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print