SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li J, Zhang B, Liu W, Tan Z. Process. Saf. Environ. Prot. 2011; 89(5): 300-309.

Copyright

(Copyright © 2011, Institution of Chemical Engineers and European Federation of Chemical Engineering, Publisher Hemisphere Publishing)

DOI

10.1016/j.psep.2011.06.002

PMID

unavailable

Abstract

In densely populated urban areas, in the event of the toxic gases leak, how to accurately determine the risky zone and take effective measures to evacuate inhabitants quickly out of dangerous areas and minimize the unexpected losses is a tropical topic in China. First, the ALOHA code defined any interested accidents scenarios. For any different exposure times and concentrations, the distances down wind direction could be determined, which eventually generated the dead zone, wounded zone, injured zone and evacuation zone. Then, it presented the procedure of an emergency evacuation routes selection, the choice of the principle of refuges and shelters for evacuated inhabitants, as well as evacuation traffic organizations, vehicle assignments, real-time communications and other traffic evacuation strategies. Finally, the OREMS code was proposed to study the sudden leak accident and design emergency response policies (ERP). A sudden gaseous leakage incident in Tianjin Olympic stadium was chosen as an example to verify the raw ERP including the evacuation road network design, the evacuation time for vehicles, vehicle running conditions and the possible road congestions. Results showed that when the radium of the emergency evacuation scope is about 3 km, the time for evacuation of 50% vehicles is proper.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print