SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Batiha MA, Kadhum AAH, Mohamad AB, Takriff MS, Fisal Z, Wan Daud WR, Batiha MM. Process. Saf. Environ. Prot. 2009; 87(2): 121-134.

Copyright

(Copyright © 2009, Institution of Chemical Engineers and European Federation of Chemical Engineering, Publisher Hemisphere Publishing)

DOI

10.1016/j.psep.2008.09.001

PMID

unavailable

Abstract

Many pesticides used in agricultural activities are considered environmentally non-volatile. The main purpose of this paper is to develop multimedia model to be used as a tool to predict the overall fate and transport of non-volatile organic chemicals (NVOCs) dynamic in the agro-ecosystem. The model was developed based on the EQuilibrium Criterion (EQC) model for type 2 chemicals introduced by Mackay and colleagues in 1996. Mackay's model only considered four environmental compartments, which are air, water, soil and sediment. The present model adds the vegetation compartment, in addition to previous compartments that shape the agro-ecosystem. The vegetation compartment is described by two sub-compartments consisting of the above ground plant (AGP) and roots. The model was parameterized for the Cameron Highlands region, Malaysia, and runs with an illustrative emission rate of 1 kg h−1 into the air for three selected pesticides, namely, mancozeb, spinosad and chlorosulfuron. The simulation results with and without vegetation compartment were compared. The estimated results indicating that the AGP captures 99.9% of introduced NVOCs (i.e., of 100% or 1 kg h−1) and transfers them to the ground below due to the slight degradation losses of 10−4% and the non-volatility property of the evaluated chemicals. Root uptake of chlorosulfuron accounted the highest removal process from soil while degradation of spinosad in the soil is the major loss mechanism. Leaching to groundwater loss for mancozeb is about 2-fold greater than that of degradation, which together accounted the major removal process from soil. Based on the estimated results of mass distribution on the overall system, vegetation compartment accumulates 0.04%, 0.5% and 2.02% of the mancozeb, spinosad and chlorosulfuron, respectively.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print