SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Eicholtz MR, Caspall JJ, Dao PV, Sprigle S, Ferri A. J. Rehabil. Res. Dev. 2012; 49(1): 51-62.

Affiliation

Carnegie Mellon University-Mechanical Engineering, 5000 Forbes Ave, Scaife Hall, B-2, Pittsburgh, PA 15213. mattheweicholtz@gmail.com.

Copyright

(Copyright © 2012, Rehabilitation Research and Development Service, U.S. Department of Veterans Affairs)

DOI

unavailable

PMID

22492337

Abstract

The iMachine is a spring-loaded turntable used to measure inertial properties of irregularly shaped rigid bodies, specifically manual wheelchairs. We used a Newton-Euler approach to calculate wheelchair mass and center of mass (CM) location from static force measurements using load cells. We determined the moment of inertia about the vertical axis from the natural frequency of the system in simple harmonic motion. The device was calibrated to eliminate the effects of platform components on measurement error. For objects with known inertial properties, the average relative error of the mass and the CM coordinates (x and y) were 0.76%, 0.89%, and 1.99%, respectively. The resolution of the moment of inertia calculation depends on the ratio of test piece inertia to system inertia, such that the higher the ratio, the more accurate the measurements. We conducted a Gage Repeatability and Reproducibility (Gage R&R) test using three manual wheelchairs measured three times by three operators; the results showed that over 90% of the variance in inertia was caused by differences in the wheelchairs being measured. Gage R&R analysis indicated that measurement system operation was acceptable using criteria from the Automobile Industry Action Group for both inertia and mass measurements.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print