SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhou J, Li X, Shi X. Safety Sci. 2012; 50(4): 629-644.

Copyright

(Copyright © 2012, Elsevier Publishing)

DOI

10.1016/j.ssci.2011.08.065

PMID

unavailable

Abstract

Rockburst possibility prediction is an important activity in many underground openings design and construction as well as mining production. Due to the complex features of rockburst hazard assessment systems, such as multivariables, strong coupling and strong interference, this study employs support vector machines (SVMs) for the determination of classification of long-term rockburst for underground openings. SVMs is firmly based on the theory of statistical learning algorithms, uses classification technique by introducing radial basis function (RBF) kernel function. The inputs of models are buried depth H, rocks' maximum tangential stress σθ, rocks' uniaxial compressive strength σc, rocks' uniaxial tensile strength σt, stress coefficient σθ/σc, rock brittleness coefficient σc/σt and elastic energy index Wet. In order to improve predictive accuracy and generalization ability, the heuristic algorithms of genetic algorithm (GA) and particle swarm optimization algorithm (PSO) are adopted to automatically determine the optimal hyper-parameters for SVMs. The performance of hybrid models (GA + SVMs = GA-SVMs) and (PSO + SVMs = PSO-SVMs) have been compared with the grid search method of support vector machines (GSM-SVMs) model and the experimental values. It also gives variance of predicted data. A rockburst dataset, which consists of 132 samples, was employed to evaluate the current method for predicting rockburst grade, and the good results of overall success rate were obtained. The results indicated that the heuristic algorithms of GA and PSO can speed up SVMs parameter optimization search, the proposed method is robust model and might hold a high potential to become a useful tool in rockburst prediction research.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print