SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen X, Li W, Yan X. Safety Sci. 2012; 50(4): 645-648.

Copyright

(Copyright © 2012, Elsevier Publishing)

DOI

10.1016/j.ssci.2011.08.063

PMID

unavailable

Abstract

When fully-mechanized caving face passed fault, rock burst accidence easily occurred. The SOS microseism monitoring system was applied to monitor the microseismic activities all time occurred in the coal and rock mass near the fault area. Variation features of microseismic energy releasing and microseismic frequency were analyzed. Numerical simulation method was used to research the abutment stress distribution when coal face passed fault, which was compared with microseism occurrence rules. When the coal face approached to fault, the abutment stress increases gradually, so the high stress would accumulate near the fault region. When the coal face left fault, the abutment stress decreased. The SOS microseism monitoring results showed that microseismic activity in the fault area had a high instability. When the coal face neared to the fault, total energy value and frequency released by the microseism steadily increased. The maximum energy peak value also had the tendency to rapidly increase. Before the strong shock occurred, there was a period of weak seismic activity. The weak seismic activity showed energy accumulation for strong shock, which can be used to forecast the danger of rock burst.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print