SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mun KJ, Kim TJ, Kim YS. Proc. Inst. Mech. Eng. Pt. D J. Automobile Eng. 2010; 224(1): 1-13.

Copyright

(Copyright © 2010, Institution of Mechanical Engineers, Publisher SAGE Publishing)

DOI

10.1243/09544070JAUTO1229

PMID

unavailable

Abstract

Tubular-type torsion beam rear-suspension systems are widely used in small passenger cars owing to their compactness, light weight, and cost efficiency. It is already known that the roll behaviour of a torsion beam suspension system can be approximated to that of a semitrailing arm suspension system. By this kinematic assumption, analytical equations to obtain the roll centre height, roll steer, and roll camber have already been developed in terms of geometry points. Therefore, this paper proposes an analytical method to calculate the torsional stiffness of a tubular beam from its cross-section area based on the assumption that a tubular beam is a series connection of finite lengths with a constant cross-section. In addition, a potential energy method is proposed to calculate the roll stiffness of a tubular torsion beam suspension system based on considering the bushing stiffness and torsional stiffness of the tubular beam without the use of any commercial computer-aided engineering (CAE) software. The torsional stiffness and roll stiffness predicted using the proposed method showed errors of about 4 per cent and 3.3 per cent respectively, when compared with results from commercial CAE software.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print