SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li L, Song J, Li HZ, Shan DS, Kong L, Yang CC. Proc. Inst. Mech. Eng. Pt. D J. Automobile Eng. 2009; 223(8): 987-1002.

Copyright

(Copyright © 2009, Institution of Mechanical Engineers, Publisher SAGE Publishing)

DOI

10.1243/09544070JAUTO1168

PMID

unavailable

Abstract

The contact friction characteristic between a tyre and the road is a key factor that dominates the dynamics performance of a vehicle under critical conditions. Vehicle dynamics control systems, such as anti-lock braking systems, traction control systems, and electronic stability control systems (e.g. Elektronisches Stabilitäts Programm (ESP)), need an accurate road friction coefficient to adjust the control mode. No time delay in the estimation of road friction should be allowed, thereby avoiding the disappearance of the optimal control point. A comprehensive method to predict the road friction is suggested on the basis of the sensor fusion method, which is suitable for variations in the vehicle dynamics characteristics and the control modes. The multi-sensor signal fusion method is used to predict the road friction coefficient for a steering manoeuvre without braking; if active braking is involved, simplified models of the braking pressure and tyre force are adopted to predict the road friction coefficient and, when high-intensity braking is being considered, the neural network based on the optimal distribution method of the decay power is applied to predict the road friction coefficient. The method is validated through a ground test under complicated manoeuvre conditions. It was verified that the comprehensive method predicts the road friction coefficient promptly and accurately.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print