SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Carty CP, Cronin NJ, Lichtwark GA, Mills PM, Barrett RS. PLoS One 2012; 7(3): e33591.

Affiliation

Centre for Musculoskeletal Research, Griffith Health Institute and School of Physiotherapy and Exercise Science, Griffith University, Gold Coast, Australia.

Copyright

(Copyright © 2012, Public Library of Science)

DOI

10.1371/journal.pone.0033591

PMID

22438956

PMCID

PMC3306422

Abstract

When released from an initial, static, forward lean angle and instructed to recover with a single step, some older adults are able to meet the task requirements, whereas others either stumble or fall. The purpose of the present study was to use the concept of margin of stability (MoS) to investigate balance recovery responses in the anterior-posterior direction exhibited by older single steppers, multiple steppers and those that are able to adapt from multiple to single steps following exposure to repeated forward loss of balance. One hundred and fifty-one healthy, community dwelling, older adults, aged 65-80 years, participated in the study. Participants performed four trials of the balance recovery task from each of three initial lean angles. Balance recovery responses in the anterior-posterior direction were quantified at three events; cable release (CR), toe-off (TO) and foot contact (FC), for trials performed at the intermediate lean angle. MoS was computed as the anterior-posterior distance between the forward boundary of the Base of Support (BoS) and the vertical projection of the velocity adjusted centre of mass position (XCoM). Approximately one-third of participants adapted from a multiple to a single step recovery strategy following repeated exposure to the task. MoS at FC for the single and multiple step trials in the adaptation group were intermediate between the exclusively single step group and the exclusively multiple step group, with the single step trials having a significant, 3.7 times higher MoS at FC than the multiple step trials. Consistent with differences between single and multiple steppers, adaptation from multiple to single steps was attributed to an increased BoS at FC, a reduced XCoM at FC and an increased rate of BoS displacement from TO to FC. Adaptations occurred within a single test session and suggest older adults that are close to the threshold of successful recovery can rapidly improve dynamic stability following repeated exposure to a forward loss of balance.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print