SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Simpson KM, Munro BJ, Steele JR. Ergonomics 2012; 55(3): 316-326.

Affiliation

Biomechanics Research Laboratory, School of Health Sciences , University of Wollongong , Northfields Avenue , Wollongong , 2522 , Australia.

Copyright

(Copyright © 2012, Informa - Taylor and Francis Group)

DOI

10.1080/00140139.2011.642004

PMID

22409169

Abstract

The effect of load carriage on female recreational hikers has received little attention. This study collected lower limb sagittal plane kinematic, spatio-temporal and ground reaction force (GRF) data from 15 female hikers carrying four loads (0%, 20%, 30% and 40% body weight (BW)) over 8 km. Increasing load resulted in a proportional increase in GRF up to 30% BW, increased stance time, and greater mediolateral impulse with 30% and 40% BW. Also seen were decreased velocity and cadence and increased double support and knee flexion when carrying load compared to no load. Increased distance resulted in increased knee flexion and ankle plantar flexion at initial foot-ground contact. It was concluded that, as load mass and distance increased, female hikers modified their gait to attenuate the lower limb impact forces. When carrying 30% and 40% BW loads, however, the changes aimed at attenuating the higher GRF may result in a less stable gait. Practitioner Summary: Limited research has investigated the biomechanical responses of female recreational hikers to prolonged load carriage. This study provides a better understanding of the effects of increasing load on lower limb kinematics, spatio-temporal parameters and the GRF generated by female hikers during prolonged load carriage. The results have implications for the development of load carriage guidelines to minimise the risk of injury to females who carry backpacks and to improve performance for this population.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print