SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Beaumont A, Marmarou A, Czigner A, Yamamoto M, Demetriadou K, Shirotani T, Marmarou C, Dunbar J. Neurol. Res. 1999; 21(8): 742-754.

Affiliation

Division of Neurosurgery, Medical College of Virginia, Richmond, USA.

Copyright

(Copyright © 1999, Forefront Publishing Group)

DOI

unavailable

PMID

10596383

Abstract

This study examines neuropsychological dysfunction after varying severities of the Impact Acceleration Model of diffuse traumatic brain injury. Adult rats (340 g-400 g) were divided into five groups, and exposed to varying degrees of Impact Acceleration Injury (1 m, 2 m, 2.1 m/500 g and second insult). After injury, animals were allowed to recover; acute neurological reflexes, beam walk score, beam balance score, inclined plane score, and Morris Water Maze score were then assessed at multiple time points. Injury of all severities caused significant motor and cognitive deficits. With milder injuries these effects were transient; however, with more severe injuries no recovery in function was seen. The addition of hypoxia and hypotension made a moderate injury worse than a severe injury. The acute neurological reflexes, the beam balance test and the inclined plane test distinguished between the more severely injured groups, but were affected less by mild injury. The beam walk test was sensitive to mild injury, but appeared unable to distinguish between the severe groups. The Morris Water Maze was sensitive for all injury groups, but appeared to adopt a different response profile with secondary insult. This study has for the first time characterized the degree of motor and cognitive deficits in rodents exposed to differing severities of Impact Acceleration Injury. These data confirm that the tests considered, and the Injury Model used, provide a useful system for the consideration of potential therapies which might ameliorate neuropsychological deficits in diffuse brain injury.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print