SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu D, Liu J, Wen J. Free Radic. Biol. Med. 1999; 27(3-4): 478-482.

Affiliation

Department of Neurology, University of Texas Medical Branch, Galveston 77555-0653, USA. dliu@utmb.edu

Copyright

(Copyright © 1999, Elsevier Publishing)

DOI

unavailable

PMID

10468225

Abstract

To reveal whether reactive oxygen species (ROS) play a role after spinal cord injury, we developed a unique method for assaying hydrogen peroxide (H2O2) and determined the time course of its concentration changes following impact injury to the rat spinal cord. Microdialysis was used to sample H2O2 in the extracellular space and the dialysates were collected into a vial containing salicylate and ferrous chloride (FeCl2). H2O2 collected in the vial was converted to hydroxyl radicals (*OH) by FeCl2 catalysis. 2,3- and 2,5-dihydroxybenzoic acid produced by reaction of *OH with salicylate in the collecting vial were measured by HPLC and calibrated to H2O2 concentrations. The postinjury levels of H2O2 were significantly increased (p = 0.02) for over 11 h. FeCl2 administered through the dialysis fiber catalyzes H2O2 conversion in the cord to *OH. This *OH does not reach the collecting vial due to its extremely short lifetime (nanoseconds). The reduced H2O2 levels in the vials validate the measurement of H2O2. The relatively long-lasting formation of H2O2 and superoxide reported herein and previously suggests that ROS may be important in secondary spinal cord damage and that removal of ROS may be a realistic treatment strategy for reducing injury caused by free radicals.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print