SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Weerdesteyn V, Schillings AM, Van Galen GP, Duysens J. J. Mot. Behav. 2003; 35(1): 53-63.

Copyright

(Copyright © 2003, Informa - Taylor and Francis Group)

DOI

10.1080/00222890309602121

PMID

unavailable

Abstract

In this study, dual-task interference in obstacle-avoidance tasks during human walking was examined. Ten healthy young adults participated in the experiment. While they were walking on a treadmill, an obstacle suddenly fell on the treadmill in front of their left leg during either midswing, early stance, or late stance of the ipsilateral leg. Participants were instructed to avoid the obstacle, both as a single task and while they were concurrently performing a cognitive secondary task (dual task). Rates of failure, avoidance strategy, and a number of kinematic parameters were studied under both task conditions. When only a short response time was available, rates of failure on the avoidance task were larger during the dual task than during the single task. Smaller crossing swing velocities were found during the dual task as compared with those observed in the single task. The difference in crossing swing velocities was attributable to increased stiffness of the crossing swing limb. The results of the present study indicated that divided attention affects young and healthy individuals' obstacle-avoidance performance during walking.
Abstract In this study, dual-task interference in obstacle-avoidance tasks during human walking was examined. Ten healthy young adults participated in the experiment. While they were walking on a treadmill, an obstacle suddenly fell on the treadmill in front of their left leg during either midswing, early stance, or late stance of the ipsilateral leg. Participants were instructed to avoid the obstacle, both as a single task and while they were concurrently performing a cognitive secondary task (dual task). Rates of failure, avoidance strategy, and a number of kinematic parameters were studied under both task conditions. When only a short response time was available, rates of failure on the avoidance task were larger during the dual task than during the single task. Smaller crossing swing velocities were found during the dual task as compared with those observed in the single task. The difference in crossing swing velocities was attributable to increased stiffness of the crossing swing limb. The results of the present study indicated that divided attention affects young and healthy individuals' obstacle-avoidance performance during walking.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print