SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mol MA, van den Berg RM, Benschop HP. Toxicol. Appl. Pharmacol. 2008; 230(1): 97-108.

Affiliation

TNO Defence, Security and Safety (formerly TNO Prins Maurits Laboratory), PO Box 45, Rijswijk, The Netherlands. marijke.mol@tno.nl

Copyright

(Copyright © 2008, Elsevier Publishing)

DOI

10.1016/j.taap.2008.02.006

PMID

18342354

Abstract

Although some toxicological mechanisms of sulfur mustard (HD) have been uncovered, new knowledge will allow for advanced insight in the pathways that lead towards epidermal-dermal separation in skin. In the present investigation, we aimed to survey events that occur at the protein level in human epidermal keratinocytes (HEK) during 24 h after exposure to HD. By using radiolabeled (14)C-HD, it was found that proteins in cultured HEK are significant targets for alkylation by HD. HD-adducted proteins were visualized by two-dimensional gel electrophoresis and analyzed by mass spectrometry. Several type I and II cytokeratins, actin, stratifin (14-3-3sigma) and galectin-7 were identified. These proteins are involved in the maintenance of the cellular cytoskeleton. Their alkylation may cause changes in the cellular architecture and, in direct line with that, be determinative for the onset of vesication. Furthermore, differential proteomic analysis was applied to search for novel features of the cellular response to HD. Partial breakdown of type I cytokeratins K14, K16 and K17 as well as the emergence of new charge variants of the proteins heat shock protein 27 and ribosomal protein P0 were observed. Studies with caspase inhibitors showed that caspase-6 is probably responsible for the breakdown of type I cytokeratins in HEK. The significance of the results is discussed in terms of toxicological relevance and possible clues for therapeutic intervention.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print