SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Stark A, Zohary E. Cereb. Cortex 2008; 18(10): 2358-2368.

Affiliation

Interdisciplinary Center for Neural Computation and Department of Neurobiology, Hebrew University, Jerusalem 91904, Israel. alit@alice.nc.huji.ac.il

Copyright

(Copyright © 2008, Oxford University Press)

DOI

10.1093/cercor/bhm260

PMID

18252741

Abstract

During daily life, we reach and grasp objects located in a variety of positions in our visual-field. Where is the information regarding the visual (position) and motor (acting-hand) aspects integrated in the brain? To address this question, a functional magnetic resonance imaging experiment was conducted, in which 10 right-handed subjects used their right or left hand to grasp 3-dimensional tools, located to the right or left of a central fixation point. The posterior part of the intraparietal sulcus (IPS), the putative human homolog of caudal-IPS, was found to be primarily involved in representing the visual location of the tools, whereas more anterior regions, the human homologs of medial intraparietal area and anterior intraparietal, primarily encoded the identity of the contralateral acting-hand. Quantitative analysis revealed 2 opposite visual and motor gradients along the posterior-anterior axis within the IPS: although the importance of the visual-field gradually diminished, the weight of the acting-hand became increasingly greater. Moreover, direct evidence for visuomotor interaction was found in all 3 IPS subregions, but not in occipital or frontal regions. These findings support the hypothesis that the human IPS is comprised of subregions that have different properties, and that it is engaged in visuomotor transformations necessary for visually guided prehension.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print