SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

bdel-Malek K, Yu W, Yang J, Nebel K. Int. J. Ind. Ergonomics 2004; 34(5): 375-394.

Copyright

(Copyright © 2004, Elsevier Publishing)

DOI

unavailable

PMID

unavailable

Abstract

A rigorous mathematical formulation for ergonomic design based on obtaining and visualizing the workspace of human limbs is herein presented. The methodology and formulation presented in this paper are aimed at placing the human with respect to specified targets, whereby optimizing a given human performance measure. These measures are developed as mathematical cost functions that can be maximized or minimized. For example, as a result of this analysis, a method for placing the human operator relative to the controls in an assembly line while minimizing the person's stress at each joint can be achieved. Other cost functions such as maximizing reachability or maximizing dexterity are considered. The method is characterized by two steps: (1) determine the boundary envelope (also called reach envelope) of a human limb in closed form as, and, (2) move the workspace envelope towards optimizing the cost function while satisfying all constraints. By defining a new position and orientation of the limb's workspace with respect to the target points, it is possible to establish an ergonomic design that satisfies the given constraints. The strengths of this method are in its ability to visualize the placement-reach design problem and in its broadly applicable mathematical formulation well suited for computer implementation. Furthermore, because the ergonomic design problem is indeed an optimization process, the use of optimization techniques in this work lends itself to addressing other standing problems. The formulation and code are demonstrated using a number of examples.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print