SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Witte H, Preuschoft H, Recknagel S. Z. Morphol. Anthropol. 1991; 78(3): 407-423.

Affiliation

Abt. Funktionelle Morphologie, Ruhr-Universität Bochum.

Copyright

(Copyright © 1991, E Schweizerbartsche)

DOI

unavailable

PMID

1887666

Abstract

On the basis of theoretical biomechanics and of experiments, we investigated the mechanical requirements to which the body of a bipedally walking primate is subject, and the possibilities to meet these requirements with a minimum amount of energy. The least energy-consuming adaptation is clearly a body shape favourable for the preferred locomotion. Some characteristics of human body shape, in particular its proportions, could be identified as advantageous for fulfilling obvious biological roles or mechanical necessities. The characteristic length and the extended position of human hindlimbs make walking faster without additional input of energy. Mass distribution on the hindlimbs reduces the energy necessary for accelerating the swing limb after liftoff and for decelerating the swing limb before the heelstrike. Length and mass distribution in the forelimb gives it a pendulum length comparable to that of the hindlimb, so that both extremities swing at the same frequency. This swinging of the forelimbs counters in part the movements exerted by the moved hindlimbs on the trunk. The elongate and slim shape of the trunk provides great mass moments of inertia and that means stability against being flexed ventrally and dorsally by the forward and rearward movements of the heavy and long hindlimbs. Shoulder breadth in combination with the shallow shape of the thorax yield higher mass moments of inertia against the rotation of the trunk about a vertical axis than a cylindrical trunk shape. Further elongation of the hindlimbs is limited by the energy necessary for acceleration and deceleration, as well as for lifting them during the swing phase. In addition, the reaction forces exerted by the hindlimbs would expose the trunk to undue excursions if the proportions trunk length/limb length or trunk mass/limb mass would decrease. The above-noted kinetic requirements are partly in line, partly in conflict with the requirements of statics.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print