SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Vandewalle G, Hébert M, Beaulieu C, Richard L, Daneault V, Garon ML, Leblanc J, Grandjean D, Maquet P, Schwartz S, Dumont M, Doyon J, Carrier J. Biol. Psychiatry 2011; 70(10): 954-961.

Affiliation

Functional Neuroimaging Unit, University of Montréal Geriatric Institute, Montréal, Canada; Psychology Department, Université de Montréal, Montréal, Canada.

Copyright

(Copyright © 2011, Elsevier Publishing)

DOI

10.1016/j.biopsych.2011.06.022

PMID

21820647

Abstract

BACKGROUND: Vulnerability to the reduction in natural light associated with fall/winter is generally accepted as the main trigger of seasonal affective disorder (SAD), whereas light therapy is a treatment of choice of the disorder. However, the relationship between exposure to light and mood regulation remains unclear. As compared with green light, blue light was shown to acutely modulate emotion brain processing in healthy individuals. Here, we investigated the impact of light on emotion brain processing in patients with SAD and healthy control subjects and its relationship with retinal light sensitivity. METHODS: Fourteen symptomatic untreated patients with SAD (34.5 ± 8.2 years; 9 women) and 16 healthy control subjects (32.3 ± 7.7 years; 11 women) performed an auditory emotional task in functional magnetic resonance imaging during the fall/winter season, while being exposed to alternating blue and green monochromatic light. Scotopic and photopic retinal light sensitivities were then evaluated with electroretinography. RESULTS: Blue light enhanced responses to auditory emotional stimuli in the posterior hypothalamus in patients with SAD, whereas green light decreased these responses. These effects of blue and green light were not observed in healthy control subjects, despite similar retinal sensitivity in SAD and control subjects. CONCLUSIONS: These results point to the posterior hypothalamus as the neurobiological substrate involved in specific aspects of SAD, including a distinctive response to light and altered emotional responses.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print