SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Das A, Abdel-Aty MA. Safety Sci. 2011; 49(8-9): 1156-1163.

Copyright

(Copyright © 2011, Elsevier Publishing)

DOI

10.1016/j.ssci.2011.03.007

PMID

unavailable

Abstract

Analysis of both the crash count and the severity of injury are required to provide the complete picture of the safety situation of any given roadway. The randomness of crashes, the one-way dependency of injury on crash occurrence and the difference in response types have typically led researchers into developing independent statistical models for crash count and severity classification. The Genetic Programming (GP) methodology adopts the concepts of evolutionary biology such as crossover and mutation in effectively giving a common heuristic approach to model the development for the two different modeling objectives. The chosen GP models have the highest hit rate for rear-end crash classification problem and the least error for function fitting (regression) problems. Higher Average Daily Traffic (ADT) is more likely to result in more crashes. Absence of on-street parking may result in diminished severity of injuries resulting from crashes as they may provide "soft" crash barrier in contrast to fixed road side objects. Graphical presentation of the frequency of crashes with varying input variables shed new light on the results and its interpretation. Higher friction coefficient of roadways result in reduced frequency of crashes during the morning peak hours, with the trend being reversed during the afternoon peak hours. Crash counts have been observed to be at a maximum at a surface width of 30 ft. Sensitivity analysis results reflect that ADT is responsible for the largest variation in crash counts on urban arterials.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print