SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Levi DM, Klein SA, Sharma V. Vision Res. 1999; 39(3): 445-465.

Affiliation

College of Optometry, University of Houston, TX 77204-6052, USA. dlevi@uh.edu

Copyright

(Copyright © 1999, Elsevier Publishing)

DOI

unavailable

PMID

10341976

Abstract

The present paper addresses whether topographical jitter or undersampling might limit pattern perception in foveal, peripheral and strabismic amblyopic vision. In the first experiment, we measured contrast thresholds for detecting and identifying the orientation (up, down, left, right) of E-like patterns comprised of Gabor samples. We found that detection and identification thresholds were both degraded in peripheral and amblyopic vision; however, the orientation identification/detection threshold ratio was approximately the same in foveal, peripheral and amblyopic vision. This result is somewhat surprising, because we anticipated that a high degree of uncalibrated topographical jitter in peripheral and amblyopic vision would have affected orientation identification to a greater extent than detection. In the second experiment, we investigated the tolerance of human and model observers to perturbation of the positions of the samples defining the pattern when its contrast was suprathreshold, by measuring a 'jitter threshold' (the amount of jitter required to reduce performance from near perfect to 62.5% correct). The results and modeling of our jitter experiments suggest that pattern identification is highly robust to positional jitter. The positional tolerance of foveal, peripheral and amblyopic vision is equal to about half the separation of the features and the close similarity between the three visual systems argues against extreme topographical jitter. The effects of jitter on human performance are consistent with the predictions of a 'template' model. In the third experiment we determined what fraction of the 17 Gabor samples are needed to reliably identify the orientation of the E-patterns by measuring a 'sample threshold' (the proportion of samples required for 62.5% correct performance). In foveal vision, human observers are highly efficient requiring only about half the samples for reliable pattern identification. Relative to an ideal observer model, humans perform this task with 85% efficiency. In contrast, in both peripheral vision and strabismic amblyopia more samples are required. The increased number of features required in peripheral vision and strabismic amblyopia suggests that in these visual systems, the stimulus is underrepresented at the stage of feature integration.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print