SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Huang YS, Yang ZC, Liu XS, Chen FM, He BB, Li A, Crowther RS. Burns 1998; 24(8): 706-716.

Affiliation

Institute of Burn Research, Southwestern Hospital, Third Military Medical University, Chongqing, People's Republic of China.

Copyright

(Copyright © 1998, Elsevier Publishing)

DOI

unavailable

PMID

9915670

Abstract

These serial clinical and experimental studies were designed to clarify the pathogenesis of postburn MODS. Both animal and clinical studies were performed. In animal experiments, 46 male cross-bred dogs were cannulated with Swan-Ganz catheters and 39 of them were inflicted with 50% TBSA third degree burns (7 were used as controls). The burned dogs were randomly divided into 4 groups: immediate infusion, delayed infusion, delayed fast infusion and delayed fast infusion combined with ginsenosides. All dogs were kept under constant barbiturate sedation during the whole study period. Hemodynamics, visceral MDA, mitochondrial respiratory control rate (RCR) and ADP/O ratio, ATP, succinic dehydrogenase (SDH), organ water content as well as light and electron microscopy of visceral tissues were determined. In the clinical study, 61 patients with extensive deep burns were chosen, of which 16 sustained MODS. Plasma TXB2/6-keto-PGF1alpha ratio, TNF, SOD, MDA, circulatory platelet aggregate ratio (CPAR), PGE2, interleukin-1, total organ water content and pathological observations of visceral tissues from patients who died of MODS were carried out. Results demonstrated that ischemic-reperfusion damage due to severe shock, sepsis and inhalation injury are three main causes of postburn death. All inflammatory mediators increased markedly in both animals and patients who sustained organ damage or MODS. SDH, RCR, ADP/O and ATP decreased significantly. These findings suggested that ischemic damage and systemic inflammatory response syndrome (SIRS) initiated by mediators or cytokines might be important in the pathogenesis of postburn MODS.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print