SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ivancic PC, Xiao M. Accid. Anal. Prev. 2011; 43(4): 1392-1399.

Affiliation

Biomechanics Research Laboratory, Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.

Copyright

(Copyright © 2011, Elsevier Publishing)

DOI

10.1016/j.aap.2011.02.014

PMID

21545871

Abstract

OBJECTIVES: Various models for rear crash simulation exist and each has unique advantages and limitations. Our goals were to: determine the neck load and motion responses of a human model of the neck (HUMON) during simulated rear crashes; evaluate HUMON's biofidelity via comparisons with in vivo data; and investigate mechanisms of whiplash injury and prevention. METHODS: HUMON, consisting of a neck specimen (n=6) mounted to the torso of BioRID II and carrying a surrogate head and stabilized with muscle force replication, was subjected to simulated rear crashes in an energy-absorbing seat with fixed head restraint (HR) at peak sled accelerations of 9.9g (ΔV 9.2kph), 12.0g (ΔV 11.4kph), and 13.3g (ΔV 13.4kph). Physiologic spinal rotation ranges were determined from intact flexibility tests. Average time-history response corridors (±1 standard deviation) were computed for spinal motions, loads, and injury criteria. RESULTS: Neck loads generally increased caudally and consisted of shear, compression, and flexion moment caused by straightening of the kyphotic thoracic and lordotic lumbar curvatures, upward torso ramping, and head inertial and head/HR contact loads. Nonphysiologic rotation occurred in flexion at C7/T1 prior to head/HR contact and in extension at C6/7 and C7/T1 during head/HR contact. CONCLUSIONS: HUMON's neck load and motion responses compared favorably with in vivo data. Lower cervical spine flexion-compression injuries prior to head/HR contact and extension-compression injuries during head/HR contact may be reduced by refinement of existing seatback, lapbelt, and HR designs and/or development of new injury prevention systems.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print