SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Linder A. Accid. Anal. Prev. 2000; 32(2): 261-269.

Affiliation

Department of Machine and Vehicle Design, Chalmers University of Technology, Göteborg, Sweden. astrid@mvd.chalmers.se

Copyright

(Copyright © 2000, Elsevier Publishing)

DOI

unavailable

PMID

10688482

Abstract

A mathematical model of a new rear-end impact dummy neck was implemented using MADYMO. The main goal was to design a model with a human-like response of the first extension motion in the crash event. The new dummy neck was modelled as a series of rigid bodies (representing the seven cervical vertebrae and the uppermost thoracic element, T1) connected by pin joints, and supplemented by two muscle substitutes. The joints had non-linear stiffness characteristics and the muscle elements possessed both elastic stiffness and damping properties. The new model was compared with two neck models with the same number of vertebrae, but without muscle substitutes. The properties of the muscle substitutes and the need of these were evaluated by using three different modified neck models. The motion of T1 in the simulations was prescribed using displacement data obtained from volunteer tests. In a sensitivity analysis of the mathematical model the influence of different factors on the head-neck kinematics was evaluated. The neck model was validated against kinematics data from volunteer tests: linear displacement, angular displacement, and acceleration of the head relative to the upper torso at 7 km/h velocity change. The response of the new model was within the corridor of the volunteer tests for the main part of the time history plot. This study showed that a combination of elastic stiffness and damping in the muscle substitutes, together with a non-linear joint stiffness, resulted in a head-neck response similar to human volunteers, and superior to that of other tested neck models.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print