SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Juhász C, Behen ME, Muzik O, Chugani DC, Chugani HT. Epilepsia 2001; 42(8): 991-1001.

Affiliation

Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, Michigan, USA.

Copyright

(Copyright © 2001, John Wiley and Sons)

DOI

unavailable

PMID

11554884

Abstract

PURPOSE: To identify brain regions with abnormal function in children with intractable partial epilepsy and aggressive behavior by using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET). METHODS: Six children (mean age, 9.9 years) with intractable partial epilepsy and aggressive behavior underwent detailed psychodevelopmental assessment and FDG-PET scanning. The objective technique of statistical parametric mapping (SPM) was applied to define focal abnormalities of glucose metabolism, and compared those with those of a group of normal adult subjects (n = 17) as well as age-matched children with epilepsy with similar seizure characteristics but without aggression (n = 7). The findings were analyzed further by using a region-of-interest (ROI) approach. RESULTS: The aggressive children all showed developmental delay, and four of them also manifested autistic symptoms. SPM analysis demonstrated extensive glucose hypometabolism in the aggressive group bilaterally in the temporal and prefrontal cortex compared with that in normal adult controls. A focal area of medial prefrontal glucose hypometabolism was defined in the aggressive children as compared with the nonaggressive pediatric group with SPM, whereas ROI comparison of these groups confirmed prefrontal hypometabolism and also showed glucose hypometabolism of the temporal neocortex in the aggressive children. Severity of aggression correlated inversely with glucose metabolism of the left temporal as well as bilateral medial prefrontal cortex. CONCLUSIONS: Bilateral prefrontal and temporal neocortical brain glucose hypometabolism in children with epilepsy and aggressive behavior may indicate a widespread dysfunction of cortical regions, which normally exert an inhibitory effect on subcortical aggressive impulses. PET studies may be used to elucidate the neurobiologic basis of aggressive behavior in children.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print