SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Witzel U, Preuschoft H. Anthropol. Anz. 2002; 60(2): 113-135.

Affiliation

Institut für Konstruktionstechnik, Ruhr-Universität Bochum.

Copyright

(Copyright © 2002, E. Schweizerbart'sche Verlagsbuchhandlung)

DOI

unavailable

PMID

12161959

Abstract

Using the FEM-program ANSYS 5.4, we have shaped a model of the human skull in which the flow of forces and the relative location and magnitudes of stresses are investigated. Forces are applied from below through the tooth row of the upper jaw. An ample volume is provided for the transmission of these bite forces upward to the roof of the braincase, where bearings counteract the forces from below. Within this volume, no other morphological features are considered than two cone-shaped orbits and a nasal channel which has a rounded, triangular cross section, extending upward between the orbits. Under loads (= bite forces) acting simultaneously in the directions and relative sizes of realistic bite- and chewing forces, there occurred stress concentrations inside the model which resemble closely the morphological characteristics of the human skull. The most remarkable pathways of stresses correspond to Toldt's and Benninghoff's nasal, zygomatic and pterygoid pillars. Aside from these stress concentrations, stress-free regions become visible at places, where the skull shows excavations: the vaulted palate with canalis incisivus, the canine fossa, superior and inferior orbital fissure, or cavities like the maxillary sinuses and cavum cranii. Behind the posterior molars and the pterygoid, the stresses disappear abruptly, and in the side wall of the nasal cavity a maxillary hiatus remains without stresses. A flow of forces comparable to, but not at the exact position of the zygomatic arch extends from the highly stressed zygomatic bone rearward and upward. In a later step of simulation, somewhat deeper, at the place of the really existing zygomatic arch, a series of small forces was applied, which correspond to the resultant force that is created by the redirection of the pull of the m. masseter into the temporal fascia. This--biologically reasonable--manipulation of the model leads to a reduction of the forces in the zygomatic bone, and to a downward shift of the zygomatic arch and its isolation from the skull's side wall by a deep, stress-free temporal fossa. The similarity between the stress flow in the model and the shape of the skull seems to indicate that the skull, like the bones of the postcranial skeleton, develops its shape in dependence from the mechanic stressing through the process of causal histogenesis. In view of experimental results, the possibility cannot be ruled out, that the safety factors in the skull deviate from those in the postcranial skeleton.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print