SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kress TA, Porta DJ. Proc. Int. Tech. Conf. Enhanced Safety Vehicles 2001; 2001: 14 p..

Copyright

(Copyright © 2001, In public domain, Publisher National Highway Traffic Safety Administration)

DOI

unavailable

PMID

unavailable

Abstract

The objective of this investigation was to understand relationships among loading characteristics as they affect the kinematics and injury of a pedestrian's lower extremity. Real-life pedestrian and motor vehicle collision scenarios were modeled by impacting 604 human cadaver intact legs and long bones with a cart/guide rail impacting system designed to simulate the front end of an automobile. A parametric study was conducted that varied the boundary conditions on the foot as well as test parameters such as loading direction, impact velocity, and impactor geometry. The series of tests can be categorized as follows: (1) Fracture Characterization, (2) Threshold Velocity, (3) Friction versus Inertial Constraint, (4) Anterior and Lateral Thigh Impacts, and (5) Embalmed vs. Unembalmed. Documented data for various specimens include, but are not limited to, specimen anthropometrics, fracture patterns, failure force levels, and calculated bending moments. Representative values include averages as follows: Failure forces for the tibia ranged from 1.19 to 7.07 kN. Failure forces for the femur ranged from 1.31 to 8.37 kN. Bending moments averaged from approximately 100 to 500 Nm. These values varied depending on the speed of impact, impactor geometry, direction of impact, gender of specimen, etc. The results and observations may be helpful as an aid for evaluating the effectiveness of any protective or mitigative devices or strategies.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print