SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Oliveira L, Nunes U, Peixoto P. IEEE Trans. Intel. Transp. Syst. 2010; 11(1): 16-27.

Copyright

(Copyright © 2010, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TITS.2009.2026447

PMID

unavailable

Abstract

A single feature extractor-classifier is not usually able to deal with the diversity of multiple image scenarios. Therefore, integration of features and classifiers can bring benefits to cope with this problem, particularly when the parts are carefully chosen and synergistically combined. In this paper, we address the problem of pedestrian detection by a novel ensemble method. Initially, histograms of oriented gradients (HOGs) and local receptive fields (LRFs), which are provided by a convolutional neural network, have been both classified by multilayer perceptrons (MLPs) and support vector machines (SVMs). A diversity measure is used to refine the initial set of feature extractors and classifiers. A final classifier ensemble was then structured by an HOG and an LRF as features, classified by two SVMs and one MLP. We have analyzed the following two classes of fusion methods of combining the outputs of the component classifiers: (1) majority vote and (2) fuzzy integral. The first part of the performance evaluation consisted of running the final proposed ensemble over the DaimlerChrysler cropwise data set, which was also artificially modified to simulate sunny and shadowy illumination conditions, which is typical of outdoor scenarios. Then, a window-wise study has been performed over a collected video sequence. Experiments have highlighted a state-of-the-art classification system, performing consistently better than the component classifiers and other methods.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print