SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Nanni L, Lumini A. IEEE Trans. Intel. Transp. Syst. 2008; 9(2): 365-369.

Copyright

(Copyright © 2008, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TITS.2008.922882

PMID

unavailable

Abstract

In this paper, a new approach for pedestrian detection is presented. We design an ensemble of classifiers that employ different feature representation schemes of the pedestrian images: Laplacian EigenMaps, Gabor filters, and invariant local binary patterns. Each ensemble is obtained by varying the patterns used to train the classifiers and extracting from each image two feature vectors for each feature extraction method: one for the upper part of the image and one for the lower part of the image. A different radial basis function support vector machine (SVM) classifier is trained using each feature vector; finally, these classifiers are combined by the ldquosum rule.rdquo Experiments are performed on a large data set consisting of 4000 pedestrian and more than 25 000 nonpedestrian images captured in outdoor urban environments. Experimental results confirm that the different feature representations give complementary information, which has been exploited by fusion rules, and we have shown that our method outperforms the state-of-the-art approaches among pedestrian detectors.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print