SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Marzano C, Ferrara M, Curcio G, Gennaro LD. J. Sleep Res. 2010; 19(2): 260-268.

Copyright

(Copyright © 2010, European Sleep Research Society, Publisher John Wiley and Sons)

DOI

10.1111/j.1365-2869.2009.00776.x

PMID

unavailable

Abstract

Studies on homeostatic aspects of sleep regulation have been focussed upon non‐rapid eye movement (NREM) sleep, and direct comparisons with regional changes in rapid eye movement (REM) sleep are sparse. To this end, evaluation of electroencephalogram (EEG) changes in recovery sleep after extended waking is the classical approach for increasing homeostatic need. Here, we studied a large sample of 40 healthy subjects, considering a full‐scalp EEG topography during baseline (BSL) and recovery sleep following 40 h of wakefulness (REC). In NREM sleep, the statistical maps of REC versus BSL differences revealed significant fronto‐central increases of power from 0.5 to 11 Hz and decreases from 13 to 15 Hz. In REM sleep, REC versus BSL differences pointed to significant fronto‐central increases in the 0.5–7 Hz and decreases in the 8–11 Hz bands. Moreover, the 12–15 Hz band showed a fronto‐parietal increase and that at 22–24 Hz exhibited a fronto‐central decrease. Hence, the 1–7 Hz range showed significant increases in both NREM sleep and REM sleep, with similar topography. The parallel change of NREM sleep and REM sleep EEG power is related, as confirmed by a correlational analysis, indicating that the increase in frequency of 2–7 Hz possibly subtends a state‐aspecific homeostatic response. On the contrary, sleep deprivation has opposite effects on alpha and sigma activity in both states. In particular, this analysis points to the presence of state‐specific homeostatic mechanisms for NREM sleep, limited to <2 Hz frequencies. In conclusion, REM sleep and NREM sleep seem to share some homeostatic mechanisms in response to sleep deprivation, as indicated mainly by the similar direction and topography of changes in low‐frequency activity.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print