SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ferrari MC, Chivers DP. Anim. Cogn. 2011; 14(3): 309-316.

Affiliation

Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada, mcferrari@ucdavis.edu.

Copyright

(Copyright © 2011, Springer)

DOI

10.1007/s10071-010-0363-4

PMID

21203793

PMCID

PMC3078302

Abstract

A fundamental prerequisite for prey to avoid being captured is the ability to distinguish dangerous stimuli such as predators and risky habitats from non-dangerous stimuli such as non-predators and safe locations. Most research to date has focused on mechanisms allowing prey to learn to recognize risky stimuli. The paradox of learned predator recognition is that its remarkable efficiency leaves room for potentially costly mistakes if prey inadvertently learn to recognize non-predatory species as dangerous. Here, we pre-exposed embryonic woodfrogs, Rana sylvatica, to the odour of a tiger salamander, Ambystoma tigrinum, without risk reinforcement, and later try to teach the tadpoles to recognize the salamander, a red-bellied newt Cynops pyrrhogaster-a closely related amphibian, or a goldfish, Carassius auratus, as a predator. Tadpoles were then tested for their responses to salamander, newt or fish odour. Pre-exposure to salamander did not affect the ability of tadpoles to learn to recognize goldfish as a predator. However, the embryonic pre-exposure to salamanders inhibited the subsequent learning of salamanders as a potential predator, through a mechanism known as latent inhibition. The embryonic pre-exposure also prevented the learned recognition of novel newts, indicating complete generalization of non-predator recognition. This pattern does not match that of generalization of predator recognition, whereby species learning to recognize a novel predator do respond, but not as strongly, to novel species closely related to the known predator. The current paper discusses the costs of making recognition mistakes within the context of generalization of predators and dangerous habitats versus generalization of non-predators and safe habitats and highlights the asymmetry in which amphibians incorporate information related to safe versus risky cues in their decision-making. Mechanisms such as latent inhibition allow a variety of prey species to collect information about non-threatening stimuli, as early as during their embryonic development, and to use this information later in life to infer the danger level associated with the stimuli.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print