SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Akagbosu CO, Evans GC, Gulick D, Suckow RF, Bucci DJ. Schizophr. Bull. 2012; 38(4): 769-778.

Affiliation

1Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH.

Copyright

(Copyright © 2012, Maryland Psychiatric Research Center, Publisher Oxford University Press)

DOI

10.1093/schbul/sbq151

PMID

21172906

Abstract

The glia-derived molecule kynurenic acid (KYNA) is an antagonist of α7 nicotinic acetylcholine receptors and the glycine(B) binding site on n-methyl-d-aspartateglutamate receptors, both of which have critical roles in neural plasticity as well as learning and memory. KYNA levels are increased in the brains and cerebral spinal fluid of persons with schizophrenia, leading to the notion that changes in KYNA concentration might contribute to cognitive dysfunction associated with this disorder. Indeed, recent studies indicate that increasing endogenous KYNA concentration by administering l-kynurenine (L-KYN, the precursor of KYNA) impairs spatial as well as contextual learning and memory in adult rats. In the present study, rats were treated with L-KYN (100 mg/kg) throughout adolescence to increase endogenous KYNA concentration during this critical time in brain development. Rats were then tested drug-free as adults to test the hypothesis that exposure to elevated levels of KYNA during development may contribute to cognitive dysfunction later in life. Consistent with prior studies in which adult rats were treated acutely with L-KYN, juvenile rats exposed to increased KYNA concentration during adolescence exhibited deficits in contextual fear memory, but cue-specific fear memory was not impaired. In addition, rats treated with L-KYN as adolescents were impaired on a novel object recognition memory task when tested as adults. The memory deficits could not be explained by drug-induced changes in locomotor activity or shock sensitivity. Together, these findings add to the growing literature supporting the notion that exposure to increased concentration of KYNA may contribute to cognitive deficits typically observed in schizophrenia.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print