SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gao C, Kuklane K, Holmer I. Eur. J. Appl. Physiol. 2011; 111(6): 1207-1216.

Affiliation

The Thermal Environment Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering (LTH), Lund University, Box 118, 22100, Lund, Sweden, Chuansi.Gao@design.lth.se.

Copyright

(Copyright © 2011, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s00421-010-1748-4

PMID

21127896

Abstract

A previous study by the authors using a heated thermal manikin showed that the cooling rates of phase change material (PCM) are dependent on temperature gradient, mass, and covering area. The objective of this study was to investigate if the cooling effects of the temperature gradient observed on a thermal manikin could be validated on human subjects in extreme heat. The subjects wore cooling vests with PCMs at two melting temperatures (24 and 28°C) and fire-fighting clothing and equipment, thus forming three test groups (vest24, vest28 and control group without the vest). They walked on a treadmill at a speed of 5 km/h in a climatic chamber (air temperature = 55°C, relative humidity = 30%, vapour pressure = 4,725 Pa, and air velocity = 0.4 m/s). The results showed that the PCM vest with a lower melting temperature (24°C) has a stronger cooling effect on the torso and mean skin temperatures than that with a higher melting temperature (28°C). Both PCM vests mitigate peak core temperature increase during the resting recovery period. The two PCM vests tested, however, had no significant effect on the alleviation of core temperature increase during exercise in the heat. To study the possibility of effective cooling of core temperature, cooling garments with PCMs at even lower melting temperatures (e.g. 15°C) and a larger covering area should be investigated.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print