SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Diedrichsen J. Curr. Biol. 2007; 17(19): 1675-1679.

Affiliation

Wolfson Centre for Cognitive Neuroscience, School of Psychology, University of Wales, Bangor, Gwynedd LL57 2AS, United Kingdom. j.diedrichsen@bangor.ac.uk

Copyright

(Copyright © 2007, Elsevier Publishing)

DOI

10.1016/j.cub.2007.08.051

PMID

17900901

PMCID

PMC2230536

Abstract

The control and adaptation of bimanual movements is often considered to be a function of a fixed set of mechanisms [1, 2]. Here, I show that both feedback control and adaptation change optimally with task goals. Participants reached with two hands to two separate spatial targets (two-cursor condition) or used the same bimanual movements to move a cursor presented at the spatial average location of the two hands to a single target (one-cursor condition). A force field was randomly applied to one of the hands. In the two-cursor condition, online corrections occurred only on the perturbed hand, whereas the other movement was controlled independently. In the one-cursor condition, online correction could be detected on both hands as early as 190 ms after the start. These changes can be shown to be optimal in respect to a simple task-dependent cost function [3]. Adaptation, the influence of a perturbation onto the next movement, also depended on task goals. In the two-cursor condition, only the perturbed hand adapted to a force perturbation [2], whereas in the one-cursor condition, both hands adapted. These findings demonstrate that the central nervous system changes bimanual feedback control and adaptation optimally according to the current task requirements.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print