SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Jacob S, Kraft R, Zhu Y, Jacob RK, Herndon DN, Traber DL, Hawkins HK, Cox RA. Toxicol. Mech. Methods 2010; 20(8): 504-509.

Affiliation

Shriners Hospital for Children and the University of Texas Medical Branch, Galveston Texas 77555, USA.

Copyright

(Copyright © 2010, Informa Healthcare)

DOI

10.3109/15376516.2010.511302

PMID

20843269

Abstract

Smoke inhalation injury promotes exfoliation of the upper airway columnar epithelium. Tracheal tissues from sheep 30 min after smoke exposure show intact epithelial areas, areas of epithelial disruption with loss of columnar cells and areas denuded of columnar cells. In intact areas detaching ciliated cells can be seen raised above the apical surface. This study aims to assess cell-specific toxicity by examining intact epithelium after inhalation injury. The junctional adhesion integrity between columnar and basal cells and the type of cells initially being displaced were also studied using light (LM) and transmission electron microscopy (TEM). TEM assessment of intact areas of sheep tracheal tissue (n = 3) 30 min after exposure showed secretory cell toxicity including extrusion of cytoplasmic contents. In cells with severe secretory cell cytoplasmic disruption, loss of desmosomal junctions between the secretory and adjacent ciliated cells was evident. The number of desmosomes visible between columnar cells and basal cells was reduced (2.8 ± 1.8) in smoke-exposed animals compared to those in uninjured animals (5.0 ± 2.7), p = 0.008. Serial sections of intact regions found 52 cells being displaced from the epithelium. All detaching cells were identified as ciliated cells. These studies show that the acute effects of inhalation injury include selective secretory cell toxicity which is associated with loss of junctional adhesion mechanisms and displacement of ciliated cells. Improved understanding of acute hypersecretory responses and epithelial integrity after exposure to toxic agents may improve understanding of epithelial fragility in airway disease.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print