SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ali M, Park JK, Thiem V, Canh D, Emch M, Clemens JD. Int. J. Health Geogr. 2005; 4(1): 12.

Affiliation

International Vaccine Institute, SNU Research Park, San 4–8 Bongcheon-7 dong, Kwanak-gu, Seoul, Korea. mali@ivi.int.

Copyright

(Copyright © 2005, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/1476-072X-4-12

PMID

15927082

PMCID

PMC1156930

Abstract

BACKGROUND: Spatial filtering using a geographic information system (GIS) is often used to smooth health and ecological data. Smoothing disease data can help us understand local (neighborhood) geographic variation and ecological risk of diseases. Analyses that use small neighborhood sizes yield individualistic patterns and large sizes reveal the global structure of data where local variation is obscured. Therefore, choosing an optimal neighborhood size is important for understanding ecological associations with diseases. This paper uses Hartley's test of homogeneity of variance (Fmax) as a methodological solution for selecting optimal neighborhood sizes. The data from a study area in Vietnam are used to test the suitability of this method. RESULTS: The Hartley's Fmax test was applied to spatial variables for two enteric diseases and two socioeconomic determinants. Various neighbourhood sizes were tested by using a two step process to implement the Fmaxtest. First the variance of each neighborhood was compared to the highest neighborhood variance (upper, Fmax1) and then they were compared with the lowest neighborhood variance (lower, Fmax2). A significant value of Fmax1 indicates that the neighborhood does not reveal the global structure of data, and in contrast, a significant value in Fmax2 implies that the neighborhood data are not individualistic. The neighborhoods that are between the lower and the upper limits are the optimal neighbourhood sizes. CONCLUSION: The results of tests provide different neighbourhood sizes for different variables suggesting that optimal neighbourhood size is data dependent. In ecology, it is well known that observation scales may influence ecological inference. Therefore, selecting optimal neigborhood size is essential for understanding disease ecologies. The optimal neighbourhood selection method that is tested in this paper can be useful in health and ecological studies.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print