SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bertrand M, Duflo E, Mullainathan S. Q. J. Econ. 2004; 119(1): 249-275.

Copyright

(Copyright © 2004, Harvard University Department of Economics, Publisher MIT Press)

DOI

10.1162/003355304772839588

PMID

unavailable

Abstract

Most papers that employ Differences-in-Differences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in state-level data on female wages from the Current Population Survey. For each law, we use OLS to compute the DD estimate of its “effect” as well as the standard error of this estimate. These conventional DD standard errors severely understate the standard deviation of the estimators: we find an “effect” significant at the 5 percent level for up to 45 percent of the placebo interventions. We use Monte Carlo simulations to investigate how well existing methods help solve this problem. Econometric corrections that place a specific parametric form on the time-series process do not perform well. Bootstrap (taking into account the autocorrelation of the data) works well when the number of states is large enough. Two corrections based on asymptotic approximation of the variance-covariance matrix work well for moderate numbers of states and one correction that collapses the time series information into a “pre”and “post”-period and explicitly takes into account the effective sample size works well even for small numbers of states.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print