SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen KC, Chiou YL, Kao PH, Lin SR, Chang LS. Toxicon 2008; 51(4): 624-634.

Affiliation

Institute of Biomedical Sciences, National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.

Copyright

(Copyright © 2008, Elsevier Publishing)

DOI

10.1016/j.toxicon.2007.11.024

PMID

18221763

Abstract

Although Naja naja atra cardiotoxin 3 (CTX3) and cardiotoxin 4 (CTX4) showed different cytotoxicity toward human neuroblastoma SK-N-SH cells, the two toxins induced apoptotic death on SK-N-SH cells. The apoptosis signals of CTX3 and CTX3 included ROS generation, increase in mitochondrial permeability transition, cytochrome c release to the cytosol and activation of caspase-9 and -3. However, CTX3 quickly induced the effects with higher magnitude compared with CTX4. ROS production and subsequent apoptotic cell death in CTX-treated cells were partly blocked by the antioxidant 2,3-dihydroxybenzoic acid. Nevertheless, mitochondria alteration and cytosolic cytochrome c release were not significantly attenuated by the antioxidant. Cell death was not completely inhibited by caspase-3 inhibitor. Moreover, cyclosporine A, an inhibitor of mitochondrial permeability transition, slightly decreased CTX-induced ROS generation by approximately 15%. Taken together, our data indicate that N. naja atra CTXs induce ROS generation that is not wholly dependent on mitochondrial dysfunction, and that the cytotoxic potency of CTX3 and CTX4 on SK-N-SH cells is, at least in part, correlated with their capability in inducing ROS generation and mitochondrial alterations.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print