SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Olamendi-Portugal T, Gómez-Lagunas F, Gurrola GB, Possani LD. Biochem. J. 1996; 315(Pt 3): 977-981.

Affiliation

Department of Molecular Recognition and Structural Biology, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mexico.

Copyright

(Copyright © 1996, The Biochemical Society, Publisher Portland Press)

DOI

unavailable

PMID

8645186

PMCID

PMC1217303

Abstract

A novel peptide was purified and characterized from the venom of the scorpion Pandinus imperator. Analysis of its primary structure reveals that it belongs to a new structural class of K+-channel blocking peptide, composed of only 35 amino acids, but cross-linked by four disulphide bridges. It is 40, 43 and 46% identical to noxiustoxin, margatoxin and toxin 1 of Centruroides limpidus respectively. However, it is less similar (26 to 37% identity) to toxins from scorpions of the geni Leiurus, Androctonus and Buthus. The disulphide pairing was determined by sequencing heterodimers produced by mild enzymic hydrolysis. They are formed between Cys-4-Cys-25, Cys-10-Cys-30, Cys-14-Cys-32 and Cys-20-Cys-35. Three-dimensional modelling, using the parameters determined for charybdotoxin, showed that is it possible to accommodate the four disulphide bridges in the same general structure of the other K+-channel blocking peptides. The new peptide (Pil) blocks Shaker B K+ channels reversibly. It also displaces the binding of a known K+-channel blocker, [125I]noxiustoxin, from rat brain synaptosomal membranes with an IC50 of about 10 nM.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print