SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

He Q, Xue G, Chen C, Lu Z, Dong Q, Lei X, Ding N, Li J, Li H, Chen C, Li J, Moyzis RK, Bechara A. Neuropharmacology 2010; 59(6): 518-526.

Affiliation

National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, P. R. China; Department of Psychology, University of Southern California, Los Angeles, 90089, United States.

Copyright

(Copyright © 2010, Elsevier Publishing)

DOI

10.1016/j.neuropharm.2010.07.008

PMID

20659488

PMCID

PMC2946467

Abstract

Risky decision-making is a complex process that involves weighing the probabilities of alternative options that can be desirable, undesirable, or neutral. Individuals vary greatly in how they make decisions either under ambiguity and/or under risk. Such individual differences may have genetic bases. Based on previous studies on the genetic basis of decision making, two decision making tasks i.e., Iowa Gambling Task (IGT) and Loss Aversion Task (LAT) were used to test the effect of 5-HTTLPR polymorphism on decision making under ambiguity and under risk in a large Han Chinese sample (572 college students, 312 females). Basic intelligence and memory tests were also included to control for the influence of basic cognitive abilities on decision making. We found that 5-HTTLPR polymorphism significantly influenced performance in both IGT and LAT. After controlling for intellectual and memory abilities, subjects homozygous for s allele had lower IGT scores than l carriers in the first 40 trials of the IGT task. They also exhibited higher loss aversion than l carriers in the LAT task. Moreover, the effects of 5-HTTLPR were stronger for males than for females. These results extend the literature on the important role of emotion in decision under ambiguity and risk, and provide additional lights on how decision-making is influenced by culture as well as sex differences. Combining our results with existing literature, we propose that these effects might be mediated by a neural circuitry that comprises the amygdala, ventromedial prefrontal cortex, and insular cortex. Understanding the genetic factors affecting decision in healthy subjects may allow us better identify at-risk individuals, and target better the development of new potential treatments for specific disorders such as schizophrenia, addiction, and depression.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print